
Experiences with Object Oriented Parallel Plasma PIC Simulations

Viktor K. Decyk

Physics Dcpartmcnt, University oj California, Los Angclcs (UCLA),
Los Angeles California, 90024-1547, USA

and Jet Propulsion Laboratory/California Institute of Technology,
Pasadena, California 91109, USA

Charles D. Norton and Bolcslaw K. %ymanski

Department of Computer Science, AnLos Eaton Hall
Rensselaer Polytechnic Institute, Troy, New York, 12180-35!?0, [JSA

1 Introcluction

The Numerical Tokamak Project is a High Pcrformal)ce Computing]mojcct involv-
ing nine institutions, sponsored by the U. S. Dcpar[mcnt of F,nergyl. Its goal is
to moclcl a fusion energy clcvicc knowm as a tokamak in order to ~]]ldcrstaud and
predict the transport of particles and energy in these devices. Tokamaks, which
are toroiclal in shape, coufinc the plasma with a combination of an e.xtcrnal toroidal
maguctic field and a self-gcmcv-atcd poloidal n)agnetic field. The plas] na confiucmcut
in these devices is not well uuclerstood aud is worse than desired.

Onc of the two computer moclcls used in this ~Jroject is a gyroki]mtic code,
which is a rcxluccd particle-in-cell (PIC) code that fc)llows the trajcctc)ries of guid-
ing centers of particles, neglecting the rapid rc)tatiou around the magnetic field.
Particle-in-Cell codes iutcgratc the trajectories of many particles subject to clec-
tromaguetic forces, both cxtcrual and self-.gcmcrated. These forces are calculated
from a set of ficlcl equations (usually Maxwell’s equations or a subset) on a grid.
The particle’s coordinates are dcscribcd by c.cmtinuous variables. The source terms
in Maxwell’s equations (char-gc and/or current density) are calculated on a grid by
inverse interpolation. After the flcld cquatious have: becu solved CUI the grid, the
forces on the particles arc found by interpolation frolli the grid.

The size of the computation required is very large. For the tokamaks of interest,
the number of CC1lS required is about .500x 500x 128 cm 1000x 1000x 128. Since one
ncccls at least 10 particles per CCII to obtain reasonable! statistics, the code must bc
capable of following at least several hundred million particles over thousands of time
steps. The only computers currently capable of han{lliug such large problems are
the Massively Parallel Processors (MPPs), thus parallel com~)uting is an important
aspect of the Numerical Tokamak Project. There are other aspects which make
the project complex. These include n~anagcmcnt of large anlouuts of clata and its
visualization, collaboration among widely scattcrcd scicutists, and an incrcasiug
desire to add more realism.

This project is too ambitious to be completed 1).v one individual and requires
a largcx team. As a result, wc have increased our collaboration with computer

1

‘Mrlc 1: Fortran 77 and Port ran 90 Compat at.ive 13xan]plcs

I
Fcrrtran 77 Code Segment I

———
Fortran 00 Code Segrr)el!t——.. -—

din]cnsion part(icli]l],np)
dimension fx(nx)
data qn~,qlm,,dt /-1.,-1 .,.2/
call pus] I 1 (parl,qbm,eke)idirn, np,fx,nx,dt)
call CIPOS1l (part, qr]],idirn,np, q,nx)

use plasrna_nmdule
type (species) :: electrons, ions
type (fields) :: charge-density, efield
real :: dt = .2
call plasn]apushl (elect rons,cfield, dt)
call plwna-dl>ostl (electrons, cl]argc-density)

r
Ft)O Derived Type for Complex F90 Declaret~Ccrr[]]~& Variable

I
. ..—. —

type complex
real :: x, y
end type complex

type (complex) c

& —— ——— .. —-—

scientists and others who have i,hc cxl}crtisc that is required for the succcss of this
project. This talk will focus on onc such CO]kLbOratiOll with computer scientists at
Rcnssclacr Polytechnic Iustitutc in Troy, Ncw York.

2 object Oriented Concepts for Fortran Usem

Siucc the Nmncrical Tokamak project is large and a]nbitious, several members c)f
this projcci and others arc exploring the usefulness of object-oriented techniques in
managing large, complex PIC codes 2’3’4. Our usc of these techniques is currently
exploratory, designed to learn how to usc thcm cffccti vcly and to un(lcrstand what
their main value (if any) is. As part of this cxplc)ratitm, wc convcrtcd several PIC
coclcs from l,hcir original Fortran 77 to C++ and to I“ortran 90.

C++ as an object-oriented language has l)ccn attracting at,tcntion in the physics
community for some time now5 . However, it is not, con]monly known that Fortran90
also supports many object-oriented fcatums, in addition to its more well-known
array processing feat urcs6, Since many physicists are familiar with Fc)rtrau, we
thought it might bc useful to illustrate some of the most inlpc)rtallt concepts of
object-oriented programming by referring to I’ortran. [Jnfortunatc]y, the vocabulary
used by Fort, ran 90 and C++ for the same concepts cliffcrs. Thus for each concept,
we provide the tcrmiuology used by both languages.

TaMc 1 shows a few typical lines from a Fortrau 77 particle code. The pushl
subroutine advances the particles, whose coordinates are stored in the array called
part, by intcrpo]ating from the c]cctric field array c? Lllcd f x, using the time step
dt. The arguments in the subroutines pass informai ion about the particles and
fields, such ~as the array names, their dimensions, and constants SUCI1 as the charge
and charge/mass ratio for the par~icles. It would make the code clcarcr if all the
information about particles were stored togcthcx with one nanm (cmcapsulatcd),
and all the information about fields in another, and we could always refer to them
together, as shown in the Fortran 90 code in TaMc 1.

Fortran 90 allows for encapsulation of data usi],g dcrivccl types (which are

2

●

.“

.

callccl structures in C). I?ortran 77 natively supports a number of data types such
as integer, real, complex, and character. In Portran 90, one can add arbitrary data
types. TaMc 1 shows a complex type and the declaration of a comp]cx variable c.
In this nmnncr, wc can define a species type to rep] csent particles. ‘J’his species
type could contain the particle array, and all the cons(ants which describe particles,
such as their charge and their number into a single si ructure. We cau do the same
for fields.

This is all nice, but how do wc tell the Forlran],rogram about this ncw data
type? The Lest way is to put the definition of this mw type into what F’ortran 90
calls a module. This module can then bc “used” in other procedures. This is like
an include file in Fortran 77, except the ‘{module fllc” is not external. Furthermore,
F’ortran 90 dots not natively know how to o])crate ON the new data type. The user
must define these operations in procedures (such as tht: new plasma+ushl). Thus it
makes sense to put these ncw proccclurcs in the same]nodulc which dcfillcs the ncw
data type. This idea of combining ncw data structures with the])roccdures which
can operate on thcm is ccntra] to the iclca of object oriented pro~,ramming, and is
called a class in C++. Data types and procedures within a module arc accessible
only to proccclurcs which usc the module. For adclcd safety, scmc items iu a module
can bc further restricted as private where t hc data t ypcs arc accessible only from
within dcfiuing module’s procedures. This is called e]lcapsulation in C-F+.

Note that the moclules contain the data type dcfi)[ition, but tlmy do not neces-
sarily contain the data (the variable) itself. In the example above, wc have declared
two varialdcs of type fields ancl species in the main program. TILC actual variable
is called an object (or an instantiation of the class) ill C++.

It is useful to allow a hierarchy of modules. For example, for the fields module,
which knows about the fields data type, onc can include all the procedures which
operate only on fields, but not on particles, e.g. setting the initial charge density
data to zero. Similarly, the spccics module can include procedures which operate
only on clata of type spccics, such as assigning initial I]articlc coordin:itcs. However,
the proccdurc plasma-pushl needs to know about both spccics and ficlcls, so wc can
construct another module, called plasma, which contains procedures that operate
on both. This new plasma module can obtain inforlnation about t llc spccics and
ficlcls data types and proccclurcs by using the spccics and fields modules. This is
called inheritance in C++. Onc can also use (or inherit) selcc~ivcly a portion of the
module.

In I?ortran, an operation is evaluated diflcrcntly dcpcndiug on the type of the
opcrrmds. For example, a/b will give a, cliflcrcnt result if a and b are iutcgcrs than if
they arc real or complex. Fortran 90 extends this concept to derived ty~ms. Thus it
is possible to have a generic push subroutiuc, which will opel atc different ly on ions
than on electrons. This is done by cleclaring ions a]lcl electrons to bc of different
derived types and defining what proccdurc the .gcncl ic push will cxccutc for each
type. Such generic functions are called virtual fuucti(ms in C+-t.

Convcrtiug a code from Fortrau 77 to Fortran 90 using these conccl)ts resulted
in a main program that is very simple and c]cgant. Subroutiacs (]nal]y c)f which wc
placed in modules) uudcrwcnt miuor changes. This nf:w organkat ion simplifies the
addition of ncw features, such as those required for p:Lrallcl proccssillg.

3

. .

WIble 2: IBM RS6000 Sequential aad IIIM SP2 I ‘arallel 13cnclmarks———..—
ID Sequential Benchmark – 450,000 Particles——. . .

Fortran 77 245.49s I I?ortrau 90 364.25sm+ +508.00s
I 3D Parallel Benchmark - 7.962 .62~ticles

— . . .
—— .—

Fortran 77 1 6 4 9 . 0 0 s I l?ortran 90 ‘ NjA-~+ 2797~— . . .

3 Program Design with Object-Oriented Teclmiques

The object-oricmtccl paracligm encourages an application based view of programming
to emphasize clarity ancl reuse of software components. When properly designed,
classes for scqucntia] computations can be extended directly for use on MPP archi-
tmcturc!s (with the support of additional classes). For cxarnple, the sequential codes
have no support for message passing or managing clistributed data. We added a
virtual parallel machine cltws to provide object-bawd communicaticm consistcatly
across wariolw MPP architectures. The sequential field class was reused aud ex-
tended with ncw operations to support distributed data. This included routines
to rcplicatc and transport border field data to neighbor processors to reduce ofT-
proccssor rcfcv-cncm. Additionally, classes which contain distributed data now have
access to partition objects which maintain border i] information. Illtcgrating such
features into the parallel codes was straightforward since the com])oacnts of the
program were clearly ddiucd by encapsulation.

C-t-+ provides features beyond object-oriented tcclmiques to support program-
ming, such zus templates. Template classes use objects m parameters in their def-
inition. WC used Imnplatcs to represent the plasma particles and the distributed
field to simplify moving from two to three-dimensiollal C+-t codes. By redefining
our particle class ass a vector template class, we can specify partiglcs as vectors in
any dimension. Vector operations on parliclcs can then rcmainet unchanged when
moving to higher dimcasional codes; only the template parameter spocifyiug the
dimension of the particle is rc!quircd at comllilc-tin]c. The dcfiniiioll of multidimen-
sional data structures can bc handled ill the same manner. This kid of modeling
would be clifficnlt to emulate in Fortran.

4 Perfornmmce Issues

TzLblc 2 shows simple beucbmark cases of a o] ,e-dimensional sequential and
tllre&ciill]cllsiollal parallel plasma code. The Fortrau 90 sec[ucmtial code accesses
particle data through module functions corresponding to the C++ code usc of class
member functicms. Since these calls were not inlined in our 170rtraa 90 program, this
contributed significantly to the performance ovcrbead observed. Rcorgauization of
the code to make this clata directly a.ccessiMe reduced the Fortran 90 execution
time slightly below that of the Fortran 77 program. Regarding tbe parallel three-
dimensional Fortran 77 and C++ codes, we believe that Fortran 90 and HPF may
improve pcrformauce over C+-+ ancl improve reuse iind clarity over Forlran 77.

4

*,

● ✎

5 Conclusions

Tllereare a~ltllrlt~cr of bcllefits oftl]cobject-oricllted approach. Onc obviousben-
cfit is that the code looks much simpler ancl easier to read. Part of this clarity
arises bccausc details of procedures can bc hidden. A further advantage is that it
becomes easy to add ncw data types and operations without causing unintended
side-effects, since data and associated operations on the data arc cncar)sulated in
classes (or moclulcs). Thus extending or modifying tl~e code becomes much easier.
This encourages experimenting with new icleas and results in better science. An-
other advantage is cnhanccd collaboration. If different scientists or groups can agree
on common data structures and associated procedures, then code dcvclopmcnt can
proceed inclcpcnclcntly withoui fear of incompatibility y.

Ouc of the clisadvantages of the ohjcct-oriented approach, is tlic effort needed
to learn new ways of doing things. Another is degraded pcrformancc, hut for large
projects the advantages of incrcxwccl clarity and modifiability of the progratns often
outweigh these clisadvantagcs.

Of the two object-oriented approaches investigai cd, C+ -t has some advantages
compared to Fortran 90. There is a large corntnullity of practitioners to help in
learning the new approach. It is also more modern and intr-oduccs more ncw ideas.

However, Fortran 90 also has a number of advantages. It is back ward compatible
with Fortran 77, so the transition is emier, and cme can proceed iucremcntally,
without disruption or great investments i]) recoding. It supports nigh level array
constructs, which are useful ia physics. 11 is C1OSCI,Y related to High Performance
F’ortran and thus is a natural migration]~ath to ~~arallel comlmters. Fortran 90
generally produces code which executes faster. Fil Ially, the environment is more
stable (bccausc it is standardized and not rapidly evolving).

Acknowleclgments

The first author is supported by NASA HPCC, ATSF and DOE. The remaining
authors are sl~pportcd by the NASA Graduate Student Researches Program.

R.cferences

1. B, I. Cohen, ct. al. Computer Physics Communications j 87(l&2):l- 15, hlay II 1995.
2. C. D. NorLon, B. K. Szymanslii, and V. K. Dccyk. To ap~,eor in Communications

OJ the ACM, 38(10), October 1995.
3. J, V. W. Rcyndcrs, D. W, Forslund, P. J. IIinke], M. Tholburn, 1). G. Kilman, and

W. F. lIun~pllrey. Computer Physics Communicdions, 87(1&2):212- 224, May H
1995.

4, J. P. Vmboncoeur, A. D. Langdon, and N. T. Gladd, Compdcr Physics Communic-
ations, 87(l&2):199- 211, May 11 1995.

5. B. St.roustrop. The C++ Programming Language. Addison. Wesley, Reading, MA,
second cclition, 1991.

6. T. M. R. Ellis, I. R. Philips, and T. M. Lahey. For-b-an 90 Ptogmmming. Addison-
Wcslcy, Reading, M. A., 1994.

5

